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Status and demand of research to bring laser generation of nanoparticles in liquids to maturity
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A B S T R A C T

Nanoparticles are already implemented as functional elements on surfaces and into volume, but also in hybrid
nanostructures. Each application requires specific features regarding size, morphology, surface chemistry,
purity, colloidal stability, defects, or doping. However, integration of the “nano-function” into products is still
limited due to drawbacks of gas phase and chemical synthesis methods regarding particle aggregation and
contamination by adsorbates causing deactivation of their surfaces. In addition, thermodynamically-controlled
synthesis methods naturally face limited access to alloy nanoparticle systems with miscibility gaps. The devel-
opment of new synthesis methods which can be reliably scaled up to industrial levels of production is mandatory
to overcome these limitations and then widen the application prospectives of nanomaterials. Since the nineties,
Laser Ablation in Liquids (LAL) has proven its reliability and its versatility to synthesize colloidal nanoparticles.
More generally, laser/matter interaction in liquids offers several synthesis routes for nanoparticle generation. In
addition to LAL, Laser Melting in Liquids (LML), Laser Fragmentation in Liquids (LFL), as well as pulsed Laser
Photoreduction/oxidation in Liquids (LPL), offer different routes to obtain colloids with controled nanoparticle
sizes. We will present a digest of the breakthroughs achieved in the last years not only on the synthesis control,
but also on the understanding of the basics. These achievements suggest that laser generation of nanoparticles in
liquids is mature enough for industrial outlets of colloid production, with series products likely to approach the
real world in the near future.

1. History

Since the nineties, laser ablation in liquids has proven its reliability
and its versatility to synthesize nanoparticles, and reviews are available
(see Fig. 1) [1,2,3,4,5,6,7,8,9,10]. The method appears with a set of
works published in the early nineties. Fig. 1c shows a digest of the key
findings in laser synthesis of colloids. In 1991, Lida et al. [17] were
looking for a solid sampling technique to prepare samples for in-
ductively coupled plasma atomic emission spectroscopy (ICP-AES).
They described the production of “a suspension consisting of fine particles
of around 1 μm or less” which can be directly introduced into an ICP. A
brass sheet was ablated with Nd:YAG laser, and the Cu:Zn ratio in the
colloidal suspension appeared to be identical to the one of the target.
The method was called LALM (Laser ablation in a Liquid Medium).
However, the word nanoparticle was still not used. Between 1992 and
1993, several teams have reported the synthesis of carbon based ma-
terials [18,19,20,21], but the synthesis processes were not understood
at that time [10]. Fojtik and Henglein [19] performed laser ablation of
graphite microparticles suspended in toluene with a ruby laser and
managed to produce carbon clusters, including C60 and C70. Ogale
et al. [18] produced micro diamonds, from 5 μm to 20 μm, by laser
irradiation of a graphite target immersed in benzene, using a pulsed
ruby laser. In 1993, Neddersen et al. [16] were looking for surface-
enhanced Raman spectroscopy active colloids. Stable colloids of Ag, Au,
Pt, Pd and Cu nanoparticles were prepared by ablation of metal targets
in water and organic solvents using an Nd:YAG laser. A mean size of
20 nm was reported for the Ag nanoparticles. The main advantages of
the laser ablation in liquids were then explicitly described: “A new and

highly promising method for preparing metal colloids is described that
eliminates some of the problems associated with the chemical procedures
[…] Advantages of this method include the simplicity of the procedure, its
versatility with respect to metals or solvents, and the absence of chemical
reagents or ions in the final preparation.” The experimental conditions
described in this pioneering work are still the most widely used, in-
cluding the laser source, its focusing, the use of a batch chamber, and
the target motion.

With the increasing number of works, it appears that laser ablation
in liquids supports complex mechanisms which has to be controlled or
avoided, such as the post-irradiation of the produced colloids. In 1997,
Prochazka et al. [22] would like to synthesize size-controlled silver
nanoparticles dedicated to SERS. In their contribution, they addressed
three topics: the achievement of nanoparticle size-reduction by laser
fragmentation of large particles, the aggregation and the sedimentation
occurring with time in laser-generated colloids, and the influence of the
anions content on the size distribution of laser-generated colloids. To
control the particle sizes, they achieved a two-step process, first na-
noparticles are produced by laser ablation of a solid target, then the
solution is irradiated to induce the fragmentation of the larger particles
(> 40 nm). The fragmentation process is now specifically developed to
produce well defined nanoparticles from larger ones, including metals
[23,24,25,26,27,28,29,30,31], oxides [32,33,34,35,36], semi-
conductors [37,38,39], and copper hexadecafluorophthalocyanine
[40]. In the Prochazka's pioneering work, the effect of the anions
content on the size distribution is also shown, however without a po-
sitive effect on the colloidal stability. The reason is that the anions
concentration used was too high. Indeed, it has been shown later that
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the colloidal stability of metallic particles can be enhanced when the
concentration of chaotropic anions in the solution is between a few tens
and a few hundreds of μmol [41,42]. This method yields monodisperse
particles, where the anion's action takes place already within the ca-
vitation bubble on microsecond time scale [43].

In 1998, Wang et al. performed the laser ablation of a carbon target
in ammonia, and reported the synthesis of Carbon Nitride C3N4 [44,45].
It then appeared that atoms from the solvent can significantly con-
tribute to the stoichiometry of the produced nanoparticles. Wang et al.
named the method Pulsed Laser Induced Liquid-solid Interfacial Reac-
tion (PLIIR) in accordance with the physico-chemical mechanisms they
assumed [45]: “(1) The interaction of the laser beam with the bulk target
[…] results in the formation of a high-temperature, high-pressure, and high-
density plasma of evaporated materials. (2) The interaction of the plasma
with the liquid at the interface. The high-temperature of the plasma can lead
to the production and emission of a high level of positive ions and electrons

from the liquid interface. (3) Most of the positive ions from the solid target
and liquid, respectively, react with each other at the interface between the
plasma and liquid to form the nuclei of the nanocrystals […] Therefore, with
the plasma rapidly quenching in the liquid, the metastable-phase nuclei grow
large. As the growth times of the nuclei are very short, all metastable phases
formed in the reactive process may co-exist, after plasma quenching.” Even
if physico-chemical mechanisms are still under debate, some recent
evidence from experiments appears consistent with some assumptions
made in this pioneering work. Professor Sakka's group showed that in
the early stage, the nascent plasma and the liquid partially merge [46].
They also showed the transfer of Li+ and Na+ ions dissolved in the
liquid into the plasma using plasma spectroscopy [47]. The fast
quenching of the plasma has also been documented. The cooling rate
observed in laser ablation in liquids can reach 1010 K/s at the early
200 ns [10], faster than the cooling observed in other methods [48]. As
emphasized by Wang et al., laser ablation in liquids appears particularly

Fig. 1. Key findings in laser synthesis of colloids: (a) materials produced using laser ablation in liquids. Comprehensive reviews are available [1,2,3,4,5,6,7,8,9,10].
(b) Publication count from Web of Science™ (Thomson Reuters). (c) A digest of significant milestones (see plain text for details). Regarding the earlier experimental
setups dealing with laser matter interaction, PLD, LIBS and PLIRQ stand respectively for pulsed laser deposition, laser-induced breakdown spectroscopy, and pulsed-
laser-induced reactive quenching [11,12]. ICP-AES stands for coupled plasma atomic emission spectroscopy. The illustration come from Ibrahimkutty et al. [13],
Pyatenko et al. [14], and Shih et al. [15]. The scheme of the original experimental setup from Neddersen et al. [16] has been redrawn.
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relevant to prepare metastable phase compounds, including diamond
[10], cubic-BN [49,50], tetragonal nanophase of Ge [51], monoclinic
Gd2O3 [52,53,54], but also bimetallic nanoparticles frozen in me-
tastable morphologies [55,56]. Following this pioneering work, several
works report the contribution of the solvent in final products, even if
the growth mechanisms involving solvent remain scarcely described.
Indeed, carbon nitrides were observed after carbon ablation in am-
monia [57,58]. Numerous oxides were obtained from laser ablation of
pure metal targets in water [59,60,61,62,63,64,65]. Boron carbide B4C
particles were obtained after irradiation of boron powder in various
organic solvents [66]. TiN and TiC were obtained from laser ablation of
titanium target in liquid nitrogen [67] and dichloroethane [68], re-
spectively. Large area Cu2S nanorod arrays in the high temperature
phase (α) are obtained by laser ablation of a copper foil in carbon
disulfide [69]. Ablation of metals in organic solvents can also lead to
core-shell structure with a shell consisting in carbon layers [70,3,71].
Based on a series of LAL and LFL works in acetonitrile, Choi's group
systematically analyzed the carbon shell thickness into detail, and
found a thicker shell with increasing nanoparticle diameter [72]. In-
terestingly, with high relevance for catalysis, these layers are nitrogen-
doped graphitic layers on nickel nanoparticles, as the smartly chosen
solvent was acting as both the carbon and nitrogen source. Marzun
et al. recently identified the role of dissolved molecular oxygen on the
oxidation of copper nanoparticles [73]. They also observed a carbon
shell around copper nanoparticles when produced in acetone, attri-
buting its formation to the well-known copper-catalysed CeC coupling.
These carbon shells seem not to be fully tight, so potentially allowing
molecular access to the copper surface (for catalysis), and at the same
time providing oxidation protection.

In 1999, laser-induced melting is reported on gold colloids by two
groups [23,24]. The laser-induced melting and evaporation of the na-
noparticles, initially considered as a problematic side-effects during
LAL, has gained a renewed interest in the last decade. Laser melting in
liquids (LML) has been extensively studied [26,27,14,74] to reshape
colloids [75,76,77] or to produce sub-micrometer spheres of high purity
[78,79,80]. Koshizaki's group recently showed that sub-micrometer
spheres created by LML bear up to 40% of the ideal tensile fracture
strength calculated using density functional theory [81]. Hence, these
spherical particles obtained using LML exhibit quite strong and unique
mechanical properties, highly relevant for tribology. The same group
has also elaborated a low-threshold random laser from a film composed
of highly pure sub-micrometer-sized ZnO spherical particles [78,79].

In 2000, Mafune et al. showed that the addition of ligands in the
aqueous solution helps to achieve a better control of the colloidal sta-
bility, as well as a size control of the produced nanoparticles [82]. Such
a positive effect of the ligands has been observed for both LAL and LFL.
It also appears that the ligands can help to prevent the formation of
metal hydroxyde, as observed for ZnO synthesis [83,84], but can also
lead to a control of the shape of the nanoparticles, as observed for Ag2O
[85]. One can find a comprehensive review on the use of ligands in
Zhang et al. [6].

In the early days of the millennium, the basics of nanoparticle
generation and excitation by lasers in liquids were laid, including Laser
Ablation in Liquids (LAL), laser fragmentation in liquids (LFL), and
laser melting in liquids (LML). Laser parameters have been addressed
[86,87]. Synthesized materials are becoming more and more diversified
(see Fig. 1a), and the number of contributions to the field is rising to-
gether with the number of contributors (see Fig. 1b).

More recently laser generation of hydrogen peroxide has been de-
monstrated [88], opening the door to photochemistry [89]. It leads to
another strategy, which can be called laser photo-reaction in liquid
(LPL), bringing closer laser generation of nanoparticles in liquids to
photochemistry. Laser-mediated reduction of metal salts is developed to
produce core-shell particles [90] or nanoparticles composed of mate-
rials with low miscibility [91]. Fluorine-Doped Carbon Nanoparticles
are laser-generated from Hexafluorobenzene [92] and Bare Iron

Nanoparticles are laser-generated from Ferrocene Hexane [93].
Pulsed laser ablation in liquids is also used to produce precursor

solution, and then a post-treatment is applied to the freshly produced
colloid to control the crystal structure or the particle shape. Silver na-
noplates are produced by addition of hydrogen peroxide in LAL-gen-
erated colloidal silver [94]. Pt/SnO2 nanocomposites are produced after
ageing LAL-generated non-stoichiometric SnOx nanoparticles in a so-
lution of Na2PtCl4 [95]. Laser ablation of a tungsten target followed by
an ageing treatment [95,96] or an hydrothermal treatment [97] leads
to various shaped particles of tungsten oxide WO3. Ageing can also lead
to phase transition, from LAL-produced amorphous nanoparticles into
nanoparticles with well-defined crystal structure. Amorphous selenium
nanoparticles evolve into trigonal Se [96]. Amorphous germanium
nanoparticles evolve into a metastable tetragonal structure, and then
transformed into the stable cubic structure [98].

Laser-based methods of generation of colloids are becoming more
and more diversified with the aim to reach a better control of the
product (size, morphology, crystal structure), which remains an in-
herent shortcoming of laser ablation in liquids involving highly tran-
sient physico-chemical processes. That is why many efforts are made to
achieve a comprehensive description of these processes.

2. Understanding of the processes

Along all these years, many teams have sought to understand and
describe the physico-chemical processes involved in the laser genera-
tion of nanoparticles in liquids. Many efforts have been made to de-
velop in situ characterization. Fig. 2 outlines the different character-
izations reported in the literature, as well as the provided information,
and the reachable time scale for each experimental method. From these
measurements some findings are now widely accepted. First of all, in
situ time-resolved small-angle X-ray scattering [13,118,119,43], as well
as light scattering experiments [102,101], not only showed that the
nanoparticles are confined inside the vapor bubble, but also showed
that nanoparticles are present from the early stage (see insets in
Fig. 1c). In particular, light scattering experiments suggest that nano-
particles are present after a few hundreds of nanoseconds. This is
consistent with the fast cooling of the plasma reported from plasma
spectroscopy [10], keeping in mind that the fast cooling of a laser-
generated hot gas or plasma leads to nucleation and growth of particles
[131,48,132]. This scenario is also supported by numerical simulations.
In particular, a breakthrough in the understanding has recently been
achieved thanks to molecular dynamics. The Zhigilei's group has de-
veloped an atomistic simulation of the laser ablation of metal targets in
liquid environment [15,133,134]. They clearly showed two mechan-
isms of nanoparticles generation occurring in less than a few nanose-
conds for femtosecond and picosecond pulses: (i) a rapid nucleation and
growth of sub-10 nm particles in the water-metal mixing region, and (ii)
an instability of the superheated metal layer formed at the interface
with water leading to particles of a few tens of nanometers. They then
succeeded to explain the bi-modal size distribution frequently reported
from transmission electron microscopy [135,136], but also from SAXS
measurements: a first population of nanoparticles of around 10 nm
diameter, and a second population of larger nanoparticles with dia-
meters of a few tens of nanometers.

Nevertheless questions remain. The process leading to the fast va-
porization of the solvent [116], to its decomposition, and then to its
reactivity [72] is not fully described. The transfer of solvated ions (Na+,
Li+) into the plasma has been reported [47], which is unexpected for
standard vaporization. It has then been suggested that for nanosecond
pulses the water experiences explosive boiling. This echoes the ques-
tions on the size quenching induced by anions for metallic particles, or
ligands in general. The size quenching induced by the chaotropic an-
ion's action during laser synthesis of metallic particles in a solution of
low salinity happens already in the vapor phase of the cavitation bubble
[43]. Drastic size quenching observed with ligands [130,111,84] is also
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consistent with an early size quenching during the cooling of the
plasma, and then to an early penetration of the ligands into the system.
On the other hand, it is difficult to imagine that the ligands were not
decomposed when they interact with the plasma, since the decom-
position of the solvent can occur [92,93]. As a matter of fact, hydrogen
and oxygen emission has been reported during laser ablation in water
[137], as well as during laser irradiation of colloids [137,138,139,88].

At last, if one accepts that the nanoparticles appear early in the
plasma, the maturation of the particles during whole lifetime of the
vapor bubble remains poorly addressed. One can imaging Ostwald ri-
pening, coalescence, or aggregation.

3. Economical viability

Nanoparticles are widely implemented with a wide spectrum of
applications such as optics, optoelectronics, electronics, biomedicine,
pharma and health, catalysis, energy science, automotive industry, or
nutrition. These high-end-applications of colloidal nanoparticles re-
quire very well defined material properties not being compromised by
impurities, and downstream processability of colloids. Both criteria
perfectly met by laser-synthesized colloids. In contrast to chemical
routes, LAL does not require using surfactants or chemical precursors.
Moreover, LAL can be performed in a wide variety of liquids beyond the
standard solvents, including ionic liquids [142,143], and liquefied gas
[67,144,145,146,147,148]. Hence, as an alternative synthesis route,
laser generation of nanoparticles in liquids has proven its capability to
generate ligand-free colloidal nanoparticles with high purity for a
variety of materials [6]. Ligand-free surfaces are interesting for cata-
lysis as it drastically increases the yield of particle deposition on the
solid co-catalyst (that is used, e.g. for wash-coats or fuel cell electrode
impregnation). This year, the first real fuel cell device has been de-
monstrated based on laser-generated Pt/C nanoparticles [149].

In materials science, alloy nanoparticles bear great potential
[150,151,152]. Alloys illustrate one of the advantages of LAL with re-
spect to usual chemical synthesis. The transferability of the laser
synthesis route to a variety of materials further enabled high-
throughput screening of molar fraction series, sometimes not accessible
to usual chemical synthesis. Alloy nanoparticles series were synthesized
(i.e. AgAu, NiMo, AuFe, AgNi, FeNi, AlMg)
[153,140,154,155,156,157,55,137]. Interestingly, on the one hand,
phase diagram seems to play a role in ruling the nanoparticles crystal
structure and phase segregation, but at the same time, unusual struc-
tures difficult to access by conventional synthesis methods are yielded,
indicating kinetic control.

Beyond the above examples, the versatility of the aforementioned
synthesis methods involves a high potential for applications, including
bioimaging [158,159,160], cancer therapy [161,162], antibacterial
coatings [163], heterogeneous catalysis [164,157,95,8,165], photo-
electrocatalysis [166], proton exchange membrane fuel cell [149],
oxygen evolution reaction [36,167], hydrogen evolution reaction
[168], water oxidation catalysts [169], plasmonic [170], Fano re-
sonance [171], random lasers [78,79], photovoltaic [172,173,174],
additive manufacturing [175,176], and nanoparticle-polymer compo-
sites [7,177,178]. Surface-functionalized nanoparticles can be prepared
in a one-step process [158]. Looking at the application in life sciences,
the biodistribution issue has been addressed [179,180].

Recently the Gökce's group achieved a crucial breakthrough for
industrial outlets, but also for fundamental studies where a large
amount of material is needed to conduct experiments and to address
reproducibility, specifically for application in life-sciences. Good re-
producibility and significant up-scaling of nanoparticle generation were
achieved by a continuous flow synthesis using a high-power ultrafast
laser system leading to a productivity of up to multi-gram, multi-liter
colloidal nanoparticles [181,182]. LAL is then scalable and

Fig. 2. Overlapping time scales of laser synthesis of
colloids. At the top, the spatial distribution of the
plasma is observed from shadowgraph imaging, as
well as the laser induce shockwave [10]. Three pic-
tures from shadowgraph imaging show the cavita-
tion bubble (ablation of a carbon target, 5 ns pulse
duration, 45mJ/pulse, 355 nm) [10]. The time
frame gives some insight into the different char-
acteristic times of the main physical process in laser
ablation in liquids: energy transfer from the laser
excited electron gas to the matrix (a few ps), phase
transition of the target (above 100 ps), plasma life-
time (a few μs), and bubble lifetime (a few hundreds
of microseconds). In situ characterization has been
developed to obtain information on the processes
involved during laser ablation in liquids: Pump-
probe microscopy [99,100] Rayleigh-Mie scattering
[101,102,103], Raman scattering [104], plasma
imaging [46,105,106,107,108], shadowgraph ima-
ging [103,109,110,111,112,113,114,115,116,117],
small angle X-ray scattering [13,43,118,119],
acoustic signals [111,120,121], and plasma spectro-
scopy

[10,47,101,107,112,122,123,124,125,126,127,128,129,130]. The arrows display the reachable time scale for each experimental method, taking into account the
integration time of the signal. The main information provide by each experimental method are also displayed. Light-induced fluorescence has not been reported yet in
the framework of LAL, but it would be the next step to obtain deeper information on the intermediate species.
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economically feasible [141] (Fig. 3).
Thanks to these advantages, companies are doing business since

almost a decade with laser-generated nanoparticles, as well as LAL-
made heterogeneous catalyst powders: Particular GmbH [183], the
distributor Strem Chemicals, Inc. (USA), and the i-Colloid in-house
branch of IMRA (USA) [184]. The materials produced support a con-
centration of at least 100mg L−1. Biocompatible colloids and ligands-
free colloids are available.

4. Future challenge

The progress in these fields is biannually presented at the interna-
tional ANGEL meeting [185], and special issues are published con-
comitantly [186,187,188,189,190,191]. It appears that the question of
the nanoparticle formation is still only partially answered. Molecular
dynamics as well as experimental developments tend to show that the
processes occurring at the early time scales, ranging from several
femtoseconds to several microseconds, define the characteristics of the
produced nanoparticles [192]. Numerical and experimental develop-
ments are then mandatory to catch the early time scales. One of the
main challenge for molecular dynamics simulation is to include laser-
matter interaction for nanosecond pulses. Indeed numerical simulation
assuming femto- and picosecond pulse duration cannot catch the whole
complexity of the processes resulting from the plasma-laser interaction

which occurs for nanosecond pulse duration. Plasma/liquid interaction
has to be addressed to understand the fast vaporization of the solvent,
as well as the parameter favouring its decomposition and its reactivity.
Light-induced fluorescence would help to obtain deeper information on
the intermediate species.

The purity of the product, the selectivity in the crystal structure of
the oxide for instance, a fine control of the particle size distribution,
and a tight control of the morphology of the particles are shortcomings
of the former laser ablation in liquids. As a consequence, the commu-
nity has developed various strategies to obtain a tight control of the
products, leading to various laser-based methods of colloids generation.
However, efforts must be maintained to reach the tight control achieved
by the chemical routes.

Last but not least, the aforementioned companies sell laser-gener-
ated metal and metal alloy colloids in the fine chemicals market. But
there is a trend towards coming closer to application, e.g. colloids de-
veloped for biotechnology (lateral flow assays, IMRA), or so-called
supported nanoparticles for heterogeneous catalysis in larger scale
(catalyst powders, STREM Chemicals, Particular GmbH). On the one
hand, this points out the maturity of the laser-based synthesis of col-
loids. But on the other hand, end-products based on laser-made colloids
did not reach the market, yet. An industrial series product or manu-
facturing process based on laser-synthesized particles is yet to come.

Fig. 3. a) Laser ablation in liquids enables the production of surfactant-free alloys [140]. b) Dr. Galina Marzun handling multi-liter of laser-made concentrated
colloidal gold (multi-gram). c) Absolute manufacturing- and labor costs for the synthesis of 1 g colloidal gold in dependence of the nanoparticle productivity for
pulsed laser ablation of gold in water and chemical reduction.
(Figure from Jendrzej et al. [141].)
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