
Fundamentals of machine
learning: data, models, examples

Ronan Docherty – TLDR Group – 14/07/2024

Content

1) Intro

2) A quick overview

3) The layers

4) Foundation models

5) Conclusion

Intro

• Neural networks are universal
function approximators [FA]

• Can be as simple as 𝑓(𝑥) = 𝑥2 or

complex as 𝑓 = ቊ
′cat′
′dog′

• Flexible and powerful: can do
anything from linear regression to
promptable image generation

(a) Artificial neuron with weights w [AN], (b)
stacking neurons into network [St], (c) loss
landscape as a function of w [LL] and (d) an example
rule to update w to reach the minimum in (c)

Content

1) Intro

2) A quick overview

3) The layers

4) Foundation models

5) Conclusion

Problem statement

• It is our job to pick training data, model and task to best show the
mapping/function we want the NN to learn

𝒙 → 𝑓 𝒙; 𝜽 → ෝ𝒚

𝐿(ෝ𝒚, 𝒚)
Update

5

Data: input to model 𝒙, target 𝒚 Model: predicts ෝ𝒚 given 𝒙 and 𝜽

Task: how to structure 𝑓, compare ෝ𝒚 to target 𝒚 & update 𝜽?

Data

• Anything we can represent as numbers: measurements, text, images,
audio, video, graphs, … can be an input 𝒙 or target 𝒚

• Our training data are samples from some underlying distribution

• NN learns the mapping in the data (not always the mapping we want!)

• More data = better!
6

Just a cool graphic. From [Qt]

Overfitting

• We know classical overfitting & NNs can
have millions of parameters -> prone to
overfitting

• How do we detect it? Data splits!
• Train split (70%): we train model on this and

backpropagate loss

• Validation split (20%): evaluate model loss
during training, if increasing then we are
overfitting

• Test split (10%): for comparing to other models

• How do we fix it? More data and model
regularization

7

From [OF]

From [KO]

Network

• Layers stacked like Lego, output of previous
layer as input of next layer

• Non-linear activation layers => allows learning
non-linear functions

• Regularization stops overfitting & speeds up
training:
• Normalization layers: normalizes activation values

over a batch of data or layer

• Skip connections: adding/appending output of
previous layer to a future one

• Dropout: ignore connection from one layer to
another with probability p

8

From [AF]

From [LB]

Loss function

• Measures how wrong our model is going

• Can be as simple as least-squares loss, a weighted sum
of other loss functions or structured to reflect your
problem

• An example:
• Input image, target are numbers/labels (0-10). Say 0=bg,

1=car, 2=bike, …, 5=truck

• Network’s goal is to predict labels for each pixel in image

• If we used least squares loss, that says classes 0 and 1 are
more similar than 1 and 5

• This would cause network to learn poorly, so we choose a
different loss

9

From [MSE]

From [SS]

𝒙

𝒚

Optimizers and gradient descent

• We have fed 𝒙 into 𝑓 and compared its
output ෝ𝒚 to 𝒚 with 𝐿

• Backpropagation & chain-rule gives us
gradient of loss w.r.t each parameter in 𝜽

• Update these parameters to ‘move’ in
direction that minimizes loss

• SGD is the simplest update rule, other
ways exist, incorporating ideas like
‘momentum’

• Most common is Adam

10

From [OPT], ignore typo

Implementation

• Implement these ideas in code with Pytorch

• Structure:
• Data and parameters are tensors (=multidimensional arrays)

• Pack training data into batches (i.e, many 2D images into 3D array)

• This is because a) matrix multiplication is very efficient on GPUs b)
to reduce number of data copies to CPU and c) smooths our
gradient descent

• Autodifferentation: track operations on tensors in a
computational graph to work out loss gradients

• Side note: Pytorch not just for deep learning, is also a GPU
accelerated optimizer and matrix multiplier

11

Content

1) Intro

2) A quick overview

3) The layers

4) Foundation models

5) Conclusion

Fully connected layers

• Also called ‘Feed Forward’, ‘Dense’, or ‘Linear’ layer

• Does the affine operation W @ 𝒙 + 𝒃 on input 𝒙

• W is weights matrix of shape D’ x D, where D is the
dimension of vector 𝒙 and D’ is the ‘hidden
dimension’ of the layer [LB]

• Input must be 1D/Vector, output is also a vector

• Can model geometric transformations, projections,
similarities [LB]

• All-to-all nature of connections means it scales
poorly as dimension of input increases

13

GIF of information flow through
series of fully-connected layers.
From [FF]

‘Convolutions’

• FC layers scale badly with input size –
can we reuse same set of weights across
different parts of input? Yes!

• Not a real convolution – is cross-
correlation or sliding dot product

• Same set of weights slid across input –
more efficient & learns general image
features (edges, textures)

• What we slide is the kernel, length K
which we move stride S ‘pixels’ at a time

• Input (& output) can be N-dimensional
(unlike FC layer)

A sharpening kernel. From [WC]

14

From [PC]

Convolutional neural nets (CNNs)

• FC layer maps D-dimension vector to D’-dimensions, conv maps D-
channel tensor to D’-channel tensor i.e, a 3-channel RGB image (3x 2D
arrays) to 32-channel ‘image’ (32x 2D arrays)

• Common to decrease spatial dimensions (pooling/downsampling) and
increase channels (hidden information)

• U-Net: downsamples spatially then upsamples, creating ‘information
bottleneck’

15

Successive convolutional layers
learn ‘deeper’ features. From [VG]

U-Net diagram.
From [UN]

Why use CNNs? A worked example

16

• Simple task: learn to detect vertical edges in an image

• Two networks: a fully connected layer with 16781312 parameters and a
convolutional layer with 9 parameters

• Include validation image, never seen by network – how well does it end
up working?

Sobel vertical edges. From [SW]

𝒙 𝒚 𝒙val 𝒚val

Image credit: Nintendo

Why use CNNs? A worked example (contd.)

17

Why use CNNs? Results!

18

Linear

Up to a scale factor and transposition
(images in pytorch are h,w), this is the
Sobel Kernel!

How do they generalize?

Clear overfitting from the
linear layer

Attention

• For translation tasks, inputs were sequences of
(embedded) words called ‘tokens’ [AI]

• Modelling whole context (adjective-noun,
pronouns, …) important

• Q, K, V different learned projections of our
(embedded) input token sequence (via FCs)

• Computes pairwise similarity of Q & K and
matches them with V

• ‘How important is each bit of context to each
token and how should I update its
representation?’

19

Top: attention equation. Bottom:
attention map for a sentence.

From [AI]

Transformers
• Positional encoding says where words are in

sentence (i.e 1st, 2nd, …). Also works for images or
anything encoded as a sequence

• All-to-all attention -> learns global features &
propagates info easily

• 𝑂(𝑛2) operations for n tokens – expensive
computationally

20

Transformer block. From [AI]Right: a simple Vision Transformer (ViT) [VT]. Top:
cosine positional encoding of image patches [PE]

Content

1) Intro

2) A quick overview

3) The layers

4) Foundation models

5) Conclusion

Autoencoders & pretraining

• Autoencoder: encoder makes hidden
representation of input 𝒙, decoder decodes
to reconstruct original

• Masked Autoencoder: cover 70% of 𝒙,
encode, decode then compare to original

• Needs to learn general image features to do
this over many images

• Super easy to get training data: download
images and cover them with program

• ‘Self-supervised learning’

22

ViT MAE diagram for pre-training task. A
similar principle was applied to text MAE for
GPT. From [MAE]

What is a Foundation Model (FM)?

• Large (many parameters) model trained on
lots of data for a long time

• Different training stages: self-supervised ->
supervised -> reinforcement learning

• Designed to be applied to variety of tasks:
• Prompts: additional user inputs that change

output e.g, text in ChatGPT or DALL-E

• Adaptors: train small head network to use rich
FM representations for specific task

• Fine-tuning: retrain all/some of the network
(expensive!)

23

FM, f𝒙

p

ෝ𝒚 = 𝑓 𝒙; 𝜽, 𝒑

FM, f𝒙 g ෝ𝒚 = 𝑔(𝑓 𝒙)

frozen weights

trained for task

Example: ‘Segment Anything Model’

• Segmentation = assigning class to each pixel (i.e, 0=background,
1=foreground or 0=chamber, 1=catalyst, 2=bed, …)

• ‘Segment Anything Model’ = heavy autoencoder + promptable decoder

• Produces fg/bg segmentation given prompt (mouse click, bounding box)

• Decoder fast enough to run in real-time in browser! 24

Left: example of a segmentation for
self-driving cars.
Right: video of SAM producing
instance segmentations ‘prompted’
at the mouse cursor.
Made using [SAM]

From [SS]

𝒙

𝒚

Demo of my work!

https://www.sambasegment.com/

Content

1) Intro

2) A quick overview

3) The layers

4) Foundation models

5) Conclusion

Key takeaways

1. NNs approximate the underlying function in our dataset 𝐷 =
{ 𝒙𝟏, 𝒚𝟏 , 𝒙𝟐, 𝒚𝟐 , … } – they are statistical models

2. Always withhold part of 𝐷 to evaluate (train/val/test split) model on,
otherwise can’t trust or compare results

3. More data, larger model (in proportion) => better results [BL] …

4. … but we can be flexible & clever, c.f single image models like SliceGAN
[SG] or N2F [NF]

𝒙 → 𝑓 𝒙; 𝜽 → ෝ𝒚

𝐿(ෝ𝒚, 𝒚)
Update

27

Field guide

• Use datasets, dataloaders (will need to write your own)

• Use Adam optimizer with default learning rate

• Easiest way to diagnose problems is to look at tensor shapes as they
pass through layers

• See if you can adapt/finetune/integrate an existing network rather than
train one from scratch (cheaper!)

• Recommended networks for problems:
• Image problems: U-Net, Vision Transformer

• Text problems: Transformers, Recurrent Neural Network (RNN)

• Predicting on tabular data: Random Forests (XGBoost, LGBM)

• Time series prediction: Long Short-Term Memory (LTSM) network
28

More reading

• Little Book of Deep Learning

• Pytorch intro/tutorial

• 3Blue1Brown deep learning series, especially his attention video

• Sam’s (my supervisor) Coursera

• deep learning for molecules & materials

• Deep Learning Book (very rigorous)

29

https://fleuret.org/francois/lbdl.html
https://pytorch.org/tutorials/beginner/basics/intro.html
https://youtu.be/aircAruvnKk?si=V_Mtn8Rh3SPo8vji
https://youtu.be/eMlx5fFNoYc?si=t82YZdmpYdVtvHYU
https://www.coursera.org/specializations/mathematics-machine-learning
https://dmol.pub/index.html
https://www.deeplearningbook.org/

Any questions?

Thanks to:
Supervisors: Dr Samuel J. Cooper, Dr Antonis Vamvakeros
Collaborators:
• Amir Dahari
• Lei Ge
• Dr Isaac Squires
• Dr Steve Kench

Website:
https://tldr-group.github.io/#/

Github:
https://github.com/tldr-group

Funders:
Centre for Doctoral Training in the Advanced
Characterisation of Materials (CDT-ACM)
EPSRC and SFI

https://tldr-group.github.io/#/
https://github.com/tldr-group

References
• [FA] K. Hornik et al. ‘Multilayer feedforward networks are universal approximators’. Neural Network, 1989

https://www.sciencedirect.com/science/article/pii/0893608089900208
• [AN] C. lb, ‘Artifical Neuron Model Diagram’

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
• [St] R. Sebastian, Multi-Layer Perceptron

https://rasbt.github.io/mlxtend/user_guide/classifier/MultiLayerPerceptron/
• [LL] A. Amini et al., ‘Spatial Uncertainty Sampling for Endto-End Control 2019’, arXiv: 1805.04829.
• [Qt] A. Ananthaswamy, ‘How to Turn a Quantum Computer Into the Ultimate Randomness Generator’

https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-
generator-20190619/

• [OF] https://www.mathworks.com/discovery/overfitting.html
• [KO] R. Holbrook, https://www.kaggle.com/code/ryanholbrook/overfitting-and-underfitting
• [AF] N.S. Johnson et al., ‘Invited Review: Machine Learning for Materials Developments in Metals Additive

Manufacturing.’ Additive Manufacturing 36 https://doi.org/10.1016/j.addma.2020.101641.
• [FF] I. Khan, ‘From ANNs to RNNs’ https://medium.com/unpackai/from-anns-artificial-neural-networks-to-

rnns-recurrent-neural-networks-93b638772fd1
• [LB] F. Fleuret, ‘The Little Book of Deep Learning’ https://fleuret.org/public/lbdl.pdf
• [SS] W. Gu et al., ‘A review on 2D instance segmentation based on deep neural networks’, Image and Vision

Computing, 2022, doi: 10.1016/j.imavis.2022.104401.
• [WC] M. Plotke, https://en.m.wikipedia.org/wiki/File:2D_Convolution_Animation.gif

32

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://rasbt.github.io/mlxtend/user_guide/classifier/MultiLayerPerceptron/
https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-generator-20190619/
https://www.quantamagazine.org/how-to-turn-a-quantum-computer-into-the-ultimate-randomness-generator-20190619/
https://www.mathworks.com/discovery/overfitting.html
https://www.kaggle.com/code/ryanholbrook/overfitting-and-underfitting
https://doi.org/10.1016/j.addma.2020.101641
https://medium.com/unpackai/from-anns-artificial-neural-networks-to-rnns-recurrent-neural-networks-93b638772fd1
https://medium.com/unpackai/from-anns-artificial-neural-networks-to-rnns-recurrent-neural-networks-93b638772fd1
https://fleuret.org/public/lbdl.pdf
https://doi.org/10.1016/j.imavis.2022.104401
https://en.m.wikipedia.org/wiki/File:2D_Convolution_Animation.gif

References (contd.)

• [VG] A. Dertat, https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-
584bc134c1e2

• [UN] S. Cai et al., ‘A Novel Elastomeric UNet for Medical Image Segmentation’, Frontiers in Aging Neuroscience, 2022, doi:
https://doi.org/10.3389/fnagi.2022.841297

• [AI] A. Vaswani et al., ‘Attention Is All You Need’. arXiv, 2017. doi: 10.48550/arXiv.1706.03762.
• [GG] https://developers.google.com/machine-learning/gan/gan_structure
• [ST] G. Kogan, ‘Experiments with style transfer’, https://genekogan.com/works/style-transfer/
• [SG] S. Kench and S. J. Cooper, ‘Generating three-dimensional structures from a two-dimensional slice with generative

adversarial network-based dimensionality expansion’, Nature Machine Intelligence, 2021, doi: 10.1038/s42256-021-00322-
1.

• [PM] J. Stuckner et al. ‘Microstructure segmentation with deep learning encoders pre-trained on a large microscopy
dataset’. npj Comput Mater 8, 200 (2022). https://doi.org/10.1038/s41524-022-00878-5

• [VT] A. Dosovitskiy et al. ‘An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale’, arXiv, 2021. doi:
10.48550/arXiv.2010.11929.

• [PE]] S. Paul and P.-Y. Chen, ‘Vision Transformers are Robust Learners’, arXiv, 2021. doi: 10.48550/arXiv.2105.07581.
• [MAE] K. He, et al. ‘Masked Autoencoders Are Scalable Vision Learners’. arXiv, 2021. doi: 10.48550/arXiv.2111.06377.
• [SAM] https://segment-anything.com/demo#
• [N2F] J. Lequyer et al. ‘A fast blind zero-shot denoiser’. Nature Machine Intelligence, 2022,

https://doi.org/10.1038/s42256-022-00547-8
• [LLM] Ge, Lei et al. ‘Materials science in the era of large language models: a perspective’, arXiv, 2024. doi:

https://arxiv.org/abs/2403.06949

33

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://doi.org/10.3389/fnagi.2022.841297
https://doi.org/10.48550/arXiv.1706.03762
https://developers.google.com/machine-learning/gan/gan_structure
https://genekogan.com/works/style-transfer/
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2105.07581
https://doi.org/10.48550/arXiv.2111.06377
https://segment-anything.com/demo
https://doi.org/10.1038/s42256-022-00547-8
https://arxiv.org/abs/2403.06949

Extra slides

Example 1: GANs

• First real generative model

• Game between two networks: generator G
makes fake data (from seed), discriminator
D tries to distinguish between real and
fake data

• Updating weights of G based on how D
detected fake samples means it makes
better fake data in future

• Two networks training at once -> unstable!

• Applications: face generation, style
transfers, etc.

35

GAN architecture. From [GG]

HD style transfer on a tree. From [ST]

Example 1: ‘SliceGAN’

• 3D experimental data expensive (FIB-SEM)
or not high resolution (µ-CT)

• Can we use a GAN to go from 2D -> 3D?

• Yes – G makes 3D volume which we slice in
2D and give to D alongside real 2D patches

• Key assumption: homogeneity

• When trained, G can many different
volumes at any size

• Trained fresh on a single experimental
image – ‘material agnostic’

36SliceGAN trained on different inputs. From [SG]

Example 2: ‘Noise 2 Fast’

• In microscopy, often imaging something completely new (with noise!) –
motivates models that denoise using a single image

• N2F trains CNN to map between ‘checkerboard downsamples’ of image

• Key assumption: noise is spatially uncorrelated

• Works well and trains fast, but must be trained for each image 37

Left: N2F training process. Right: its application. From [N2F]

Example 3: ‘MicroNet’

• U-Net/autoencoder architectures trained
on large (100,000) micrographs to do
multi-phase segmentation – useful for
finding structure-property relationships

• Shows importance of using relevant
training data and of feature-learning for
downstream tasks

38

Left: model diagram – feature learning + classifier. Top:
performance on test data, model trained on micrographs

performs better. From [PM]

Example 4: ‘ChatGPT’

39

A multi-scale diagram of LLMs like ChatGPT. (a) attention mechanism on tokens, which forms part of the attention layer in
the transformer block in (b). Many of these are put into a ‘Large Language Model’ in (c) which is pretrained on masked
language modelling, via cross entropy loss of predicted tokens. These models are aligned with human preferences via
reinforcement learning in (d). From [LLM]

	Diapositiva 1
	Diapositiva 2: Content
	Diapositiva 3: Intro
	Diapositiva 4: Content
	Diapositiva 5: Problem statement
	Diapositiva 6: Data
	Diapositiva 7: Overfitting
	Diapositiva 8: Network
	Diapositiva 9: Loss function
	Diapositiva 10: Optimizers and gradient descent
	Diapositiva 11: Implementation
	Diapositiva 12: Content
	Diapositiva 13: Fully connected layers
	Diapositiva 14: ‘Convolutions’
	Diapositiva 15: Convolutional neural nets (CNNs)
	Diapositiva 16: Why use CNNs? A worked example
	Diapositiva 17: Why use CNNs? A worked example (contd.)
	Diapositiva 18: Why use CNNs? Results!
	Diapositiva 19: Attention
	Diapositiva 20: Transformers
	Diapositiva 21: Content
	Diapositiva 22: Autoencoders & pretraining
	Diapositiva 23: What is a Foundation Model (FM)?
	Diapositiva 24: Example: ‘Segment Anything Model’
	Diapositiva 25
	Diapositiva 26: Content
	Diapositiva 27: Key takeaways
	Diapositiva 28: Field guide
	Diapositiva 29: More reading
	Diapositiva 30
	Diapositiva 31: Thanks to:
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35: Example 1: GANs
	Diapositiva 36: Example 1: ‘SliceGAN’
	Diapositiva 37: Example 2: ‘Noise 2 Fast’
	Diapositiva 38: Example 3: ‘MicroNet’
	Diapositiva 39: Example 4: ‘ChatGPT’

